Implementation Guide for Graph Backends
This guide will walk you through the process of implementing a new graph backend for the Graph API. While the Graph API
provides several ready-to-use implementations (like SimpleGraph
and PetGraph
), you might want to build your own
implementation to support specific requirements or optimize for particular use cases.
Overview
Implementing a graph backend involves satisfying the requirements of the Graph
trait and its associated types. This
guide will walk you through:
- Understanding the core components needed for a graph implementation
- Creating the fundamental data structures
- Implementing the required traits
- Building support for indexing (optional but recommended)
- Testing your implementation
Core Components
A Graph API implementation requires several components:
- Graph Structure: The primary data structure that stores vertices and edges
- Vertex and Edge IDs: Unique identifiers for graph elements
- References: Structures that refer to vertices and edges
- Iterators: Types for traversing vertices and edges
- Index Support: Optional components for efficient element lookup by property values
Step 1: Define IDs and Basic Structures
Start by defining your graph ID types and core data structure:
#![allow(unused)] fn main() { // Example vertex and edge IDs pub struct MyVertexId { label: u16, // Identifies the variant of the vertex enum index: u32, // Unique index within that label } pub struct MyEdgeId { label: u16, // Identifies the variant of the edge enum index: u32, // Unique index within that label from: MyVertexId, to: MyVertexId, } // Import the necessary traits use graph_api_lib::{ Graph, Element, EdgeSearch, VertexSearch, SupportsVertexLabelIndex, SupportsEdgeLabelIndex, SupportsVertexHashIndex, SupportsVertexRangeIndex, SupportsEdgeRangeIndex, SupportsVertexFullTextIndex, SupportsEdgeAdjacentLabelIndex, SupportsClear, SupportsElementRemoval }; // Main graph structure pub struct MyGraph<Vertex, Edge> where Vertex: Element, // From graph_api_lib Edge: Element, // From graph_api_lib { // Your internal storage goes here // Example: vertices: Vec<YourVertexStorage<Vertex>>, edges: Vec<YourEdgeStorage<Edge>>, // More fields as needed (indexes, etc.) } }
Step 2: Define Reference Types
Create reference types that will be returned when accessing vertices and edges:
#![allow(unused)] fn main() { pub struct MyVertexReference<'graph, Graph> where Graph: graph_api_lib::Graph, { id: Graph::VertexId, weight: &'graph Graph::Vertex, // Additional fields if needed } pub struct MyVertexReferenceMut<'graph, Graph> where Graph: graph_api_lib::Graph, { id: Graph::VertexId, weight: &'graph mut Graph::Vertex, // Additional fields (like a reference to indexes) indexes: &'graph mut YourIndexStorage, } // Similar for EdgeReference and EdgeReferenceMut }
Step 3: Implement the Required Traits
Now implement the required traits for your reference types:
#![allow(unused)] fn main() { impl<'graph, Graph> graph_api_lib::VertexReference<'graph, Graph> for MyVertexReference<'graph, Graph> where Graph: graph_api_lib::Graph, { fn id(&self) -> Graph::VertexId { self.id } fn weight(&self) -> &Graph::Vertex { self.weight } fn project< 'reference, T: graph_api_lib::Project<'reference, <Graph as graph_api_lib::Graph>::Vertex>, >( &'reference self, ) -> Option<T> { graph_api_lib::Project::project(self.weight) } } // Implement VertexReferenceMut, EdgeReference, EdgeReferenceMut similarly }
Step 4: Define Iterator Types
Create iterator types for walking through vertices and edges:
#![allow(unused)] fn main() { pub struct MyVertexIter<'search, 'graph, Graph> where Graph: graph_api_lib::Graph + 'graph, { // Internal state needed for iteration // Example: vertices: &'graph [YourVertexStorage<Graph::Vertex>], current_label: usize, current_index: usize, count: usize, limit: usize, } // Implement Iterator for MyVertexIter impl<'graph, Graph> Iterator for MyVertexIter<'_, 'graph, Graph> where Graph: graph_api_lib::Graph<VertexId=MyVertexId> + 'graph, { type Item = MyVertexReference<'graph, Graph>; fn next(&mut self) -> Option<Self::Item> { // Your iterator implementation // Return the next vertex reference, or None if done } } // Similarly for MyEdgeIter }
Step 5: Implement the Graph Trait
Now implement the Graph
trait for your graph structure:
#![allow(unused)] fn main() { // First implement the core Graph trait impl<Vertex, Edge> Graph for MyGraph<Vertex, Edge> where Vertex: Element, Edge: Element, { // Define the core types type Vertex = Vertex; type Edge = Edge; type VertexId = MyVertexId; type EdgeId = MyEdgeId; // Reference types type VertexReference<'graph> = MyVertexReference<'graph, Self> where Self: 'graph; type VertexReferenceMut<'graph> = MyVertexReferenceMut<'graph, Self> where Self: 'graph; type EdgeReference<'graph> = MyEdgeReference<'graph, Self> where Self: 'graph; type EdgeReferenceMut<'graph> = MyEdgeReferenceMut<'graph, Self> where Self: 'graph; // Iterator types type EdgeIter<'search, 'graph> = MyEdgeIter<'search, 'graph, Self> where Self: 'graph; type VertexIter<'search, 'graph> = MyVertexIter<'search, 'graph, Self> where Self: 'graph; // Implement the core graph operations fn add_vertex(&mut self, vertex: Self::Vertex) -> Self::VertexId { // Implementation details } fn add_edge( &mut self, from: Self::VertexId, to: Self::VertexId, edge: Self::Edge, ) -> Self::EdgeId { // Implementation details } fn vertex(&self, id: Self::VertexId) -> Option<Self::VertexReference<'_>> { // Implementation details } fn vertex_mut(&mut self, id: Self::VertexId) -> Option<Self::VertexReferenceMut<'_>> { // Implementation details } fn vertices<'search>( &self, vertex_search: &VertexSearch<'search, Self>, ) -> Self::VertexIter<'search, '_> { // Implementation details } fn edge(&self, id: Self::EdgeId) -> Option<Self::EdgeReference<'_>> { // Implementation details } fn edge_mut(&mut self, id: Self::EdgeId) -> Option<Self::EdgeReferenceMut<'_>> { // Implementation details } fn edges<'search>( &self, id: Self::VertexId, search: &EdgeSearch<'search, Self>, ) -> Self::EdgeIter<'search, '_> { // Implementation details } // No clear method here - it's moved to the SupportsClear trait } // Then implement support traits for the features you want to provide // Implement SupportsElementRemoval if you want to support removing vertices and edges impl<Vertex, Edge> SupportsElementRemoval for MyGraph<Vertex, Edge> where Vertex: Element, Edge: Element, { fn remove_vertex(&mut self, id: Self::VertexId) -> Option<Self::Vertex> { // Implementation details for removing a vertex // Remember to handle connected edges and update indexes } fn remove_edge(&mut self, id: Self::EdgeId) -> Option<Self::Edge> { // Implementation details for removing an edge // Remember to update adjacency lists and indexes } } impl<Vertex, Edge> SupportsVertexLabelIndex for MyGraph<Vertex, Edge> where Vertex: Element, Edge: Element, { // Any trait-specific methods would go here } impl<Vertex, Edge> SupportsEdgeLabelIndex for MyGraph<Vertex, Edge> where Vertex: Element, Edge: Element, { // Any trait-specific methods would go here } impl<Vertex, Edge> SupportsVertexHashIndex for MyGraph<Vertex, Edge> where Vertex: Element, Edge: Element, { // Any trait-specific methods would go here } // Add more support trait implementations as needed // Implement SupportsClear if you want to support clearing the graph impl<Vertex, Edge> SupportsClear for MyGraph<Vertex, Edge> where Vertex: Element, Edge: Element, { fn clear(&mut self) { // Clear all graph data } } }
Step 6: Implement Indexing (Optional)
If your graph supports indexes, you'll need to implement the index handling. This typically involves:
- Creating a mutation listener for updating indexes on vertex/edge changes
- Creating storage for different index types (hash, range, full-text)
- Implementing index update logic when vertices or edges are modified
#![allow(unused)] fn main() { // Example MutationListener for vertex modifications pub struct MyVertexMutationListener<'reference, Element> { // References to indexes and ID information indexes: &'reference mut YourIndexStorage, id: YourInternalId, } impl<'reference, Element> graph_api_lib::MutationListener<'reference, Element> for MyVertexMutationListener<'reference, Element> where Element: graph_api_lib::Element, { fn update(&mut self, index: <Element::Label as Label>::Index, before: Value, after: Value) { // Update the indexes with the changed value // Remove old index entry // Add new index entry } } }
Step 7: Advanced Features
Consider implementing additional features:
- Custom Traversal Optimizations: For specific types of queries
- Specialized Index Types: For domain-specific data types
- Persistence Layer: If your graph needs to be saved/loaded
- Concurrency Support: For multi-threaded access
Step 8: Testing
Test your implementation using the Graph API's test suite:
#![allow(unused)] fn main() { #[cfg(test)] mod test { use crate::MyGraph; use graph_api_test::test_suite; test_suite!(MyGraph::new()); } }
Best Practices
- Optimized ID Types: Use small, efficient ID types (consider using newtype patterns)
- Memory Efficiency: Consider spatial locality and data structure layout
- Index Handling: Carefully manage indexes to avoid inconsistencies
- Error Handling: Provide meaningful errors for invalid operations
- Documentation: Document the specific characteristics of your implementation
Example: Implementing a Simple Adjacency List Graph
Here's a sketch of how you might implement a simple adjacency list graph:
#![allow(unused)] fn main() { pub struct AdjListGraph<V, E> { vertices: Vec<Option<V>>, edges: Vec<Option<EdgeData<E>>>, adjacency: Vec<Vec<EdgeIndex>>, // Outgoing edges for each vertex } struct EdgeData<E> { edge: E, from: VertexIndex, to: VertexIndex, } // Implement the necessary traits... }
Next Steps
Implementing a graph backend requires careful attention to detail, but the Graph API's trait system provides a clear structure to follow. By implementing the core traits and considering performance implications, you can create a specialized graph backend that perfectly fits your use case.
Remember to check the source code of existing implementations like SimpleGraph
for more detailed examples of how to
handle complex scenarios like indexing and traversal.